Multiple Chemical Sensitivity Syndrome: A Principal Component Analysis of Symptoms
نویسندگان
چکیده
منابع مشابه
Sensitivity Analysis in Kernel Principal Component Analysis
In this paper we derive empirical influence functions for features in kernel principal component analysis. Based on the derived influence functions, a sensitivity analysis procedure is proposed for detecting influential objects with respect to each feature, subspace spanned by specified eigenvectors, and configuration of the features of interest. We show the usefulness of the proposed procedure...
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملPsychophysiological hypotheses regarding multiple chemical sensitivity syndrome.
This paper proposes several hypotheses and research strategies for exploring possible psychological factors contributing to multiple chemical sensitivity (MCS). The hypotheses are based on concepts of individual response stereotypy, situational response specificity, classical conditioning of chemical-induced responses, and psychophysiological reactions to active and passive coping orientations....
متن کاملCompression of Breast Cancer Images By Principal Component Analysis
The principle of dimensionality reduction with PCA is the representation of the dataset ‘X’in terms of eigenvectors ei ∈ RN of its covariance matrix. The eigenvectors oriented in the direction with the maximum variance of X in RN carry the most relevant information of X. These eigenvectors are called principal components [8]. Ass...
متن کاملPrincipal Component Projection Without Principal Component Analysis
We show how to efficiently project a vector onto the top principal components of a matrix, without explicitly computing these components. Specifically, we introduce an iterative algorithm that provably computes the projection using few calls to any black-box routine for ridge regression. By avoiding explicit principal component analysis (PCA), our algorithm is the first with no runtime dependen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Environmental Research and Public Health
سال: 2020
ISSN: 1660-4601
DOI: 10.3390/ijerph17186551